A Transparent Lower Limb Perturbator to Investigate Joint Impedance During Gait

Biosystems & BioroboticsConverging Clinical and Engineering Research on Neurorehabilitation IV(2021)

Cited 0|Views4
No score
Abstract
Joint impedance plays an important role in postural control and movement. However, current experimental knowledge on lower limb impedance during gait is limited to the ankle joint. We designed the LOwer limb PERturbator (LOPER) aimed to assess knee and hip joint impedance during gait. The LOPER applies force perturbations with a 39 Hz bandwidth, tested on a free-hanging leg. In minimal impedance mode, peak interaction forces during walking are low (\({<}\)5 N). Also, this mode has a negligible effect on the gait pattern, as it is smaller than the within-subject variability during normal walking. In short, the LOPER is a transparent device able to elicit a clear response at both hip and knee joints to investigate lower limb dynamics. A second motor added to the LOPER could improve isolation of the perturbation contribution to knee and hip dynamics. People with neurological disorders can benefit from knowledge of joint impedance during gait through improved biomimetic devices and clinical decision making.
More
Translated text
Key words
transparent lower limb perturbator,joint impedance,gait
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined