A Bayesian Neural Network-Based Method to Calibrate Microscopic Traffic Simulators

Journal of Advanced Transportation(2021)

引用 0|浏览4
暂无评分
摘要
Calibrating the microsimulation model is essential to enhance its ability to capture reality. The paper proposes a Bayesian neural network (BNN)-based method to calibrate parameters of microscopic traffic simulators, which reduces repeated running of simulations in the calibration and thus significantly improves the calibration efficiency. We use BNN with probability distributions on the weights to quickly predict the simulation results according to the inputs of the parameters to be calibrated. Based on the BNN model with the best performance, heuristic algorithms (HAs) are performed to seek the optimal values of the parameters to be calibrated with the minimum difference between the predicted results of BNN and the field-measured values. Three HAs are considered, including genetic algorithm (GA), evolutionary strategy (ES), and bat algorithm (BA). A TransModeler case of highway links in Shanghai, China, indicates the validity of the proposed calibration method in terms of error and efficiency. The results demonstrate that the BNN model is able to accurately predict the simulation and adequately capture the uncertainty of the simulation. We also find that the BNN-BA model produces the best calibration efficiency, while the BNN-ES model offers the best performance in calibration accuracy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要