TB-3 miR-33a depletion accelerate medulloblastoma generation and invasion

Neuro-Oncology Advances(2021)

引用 0|浏览7
暂无评分
摘要
Abstract Background and purposes: Lipid metabolism have been shown to be associated with tumorigenicity in various malignancies. The purpose of this study was to investigate the association of miR-33, a key regulator of lipid metabolism, in tumorigenicity and progression of medulloblastoma. Methods: Incidence of medulloblastoma and histopathological findings were compared between ptch1+/- mice and ptch1+/- miR-33a-/- mice. Tumors extracted from these mice were transplanted subcutaneously in nude mice (n=14 for ptch1+/-, n=19 for ptch1+/- miR-33a-/-) and in C57BL/6 mice (n=12 for each). Gene expression profile was compared between tumors from ptch1+/- mice and those from ptch1+/- miR-33a-/- mice. Results: Knockout of miR-33a in ptch1+/- transgenic mouse model increased the incidence of spontaneous generation of medulloblastoma from 34.5% to 84.0% (p< 0.001) at 12 months. Histopathological analysis showed infiltrative tumor borders in ptch1+/- miR-33a-/- tumors as compared with ptch1+/- ones. Tumor formation was observed in 21.4% for ptch1+/- tumors and 68.4% for ptch1+/- miR-33a-/- tumors in nude mice (p= 0.008). It was observed in 0% and 16.7% in immune competent mice. RNA sequencing detected that SCD1 and SREBF1 was upregulated in tumors from miR-33a knockout mice. Discussion: Our results demonstrated that depletion of miR-33a accelerated medulloblastoma generation and invasion. miR-33a may also be important for immune evasion. SCD1, which is reported to play a role in tumor stem cell maintenance and metastasis, can be a potential therapeutic target for medulloblastoma.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要