Microstructural alterations predict impaired bimanual control in Parkinson's disease

BRAIN COMMUNICATIONS(2022)

引用 3|浏览9
暂无评分
摘要
Bimanual coordination is impaired in Parkinson's disease affecting patients' ability to perform activities of daily living and to maintain independence. Conveyance of information between cortical and subcortical areas is essential for bimanual coordination and relies on the integrity of cerebral microstructure. As pathological deposition of alpha-synuclein compromises microstructure in Parkinson's disease, we investigated the relationship between microstructural integrity and bimanual coordination using diffusion-weighted MRI in 23 patients with Parkinson's disease (mean age +/- standard deviation: 56.0 +/- 6.45 years; 8 female) and 26 older adults (mean age +/- standard deviation: 58.5 +/- 5.52 years). Whole-brain analysis revealed specific microstructural alterations between patients and healthy controls matched for age, sex, handedness, and cognitive status congruent with the literature and known Parkinson's disease pathology. A general linear model revealed distinct microstructural alterations associated with poor bimanual coordination in Parkinson's disease, corrected for multiple comparisons using a permutation-based approach. Integrating known functional topography, we conclude that distinct changes in microstructure cause an impediment of structures involved in attention, working memory, executive function, motor planning, motor control, and visual processing contributing to impaired bimanual coordination in Parkinson's disease. Loehrer et al. investigate the relationship between microstructural integrity and bimanual coordination in Parkinson's disease and healthy controls employing diffusion-weighted imaging. Whole-brain analysis revealed that alterations in structures involved in attention, working memory, executive function, motor planning, motor control and visual processing predicted impaired bimanual coordination in Parkinson's disease.
更多
查看译文
关键词
bimanual coordination, Parkinson's disease, diffusion imaging, NODDI, microstructure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要