The black hole information loss puzzle, matter-gravity entanglement entropy and the second law

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
Since Hawking's 1974 discovery, we expect that a black hole formed by collapse will emit radiation and eventually disappear. Closely related to the information loss puzzle is the challenge to define an objective notion of physical entropy which increases throughout this process in a way consistent with unitarity. In recent years, this has been addressed with certain notions of coarse grained entropy. We have suggested instead that physical entropy should be identified with matter-gravity entanglement entropy and that this may offer an explanation of entropy increase both for the black hole collapse and evaporation system and also for other closed unitarily evolving systems, notably the universe as a whole. For this to work, it would have to be that the matter-gravity entanglement entropy of the late-time state of black hole evaporation is larger than the entropy of the freshly formed black hole. We argue here that this is possibly the case due to (usually neglected) photon-graviton interactions. If black hole evaporation is slowed down by putting the black hole in a slightly permeable box, we give plausibility arguments that the radiation remaining after a large black hole has evaporated will (be pure and) mainly consist of roughly equal numbers of photons and gravitons entangled with one another -- with a photon-graviton entanglement entropy possibly greater than the entropy of the freshly formed black hole. It also seems possible that, even in the absence of such a box, the matter-gravity entanglement entropy might still increase and the late-time state again be a pure state of (predominantly) photons highly entangled with soft gravitons that the Hawking-emitted photons themselves had radiated. More work is needed to find out if it is indeed so.
更多
查看译文
关键词
entanglement
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要