Locked mode disruptions in DIII-D and application to ITER

arxiv(2022)

引用 0|浏览15
暂无评分
摘要
Disruptions are a serious problem in tokamaks, in which thermal and magnetic energy confinement is lost. This paper uses data from the DIII-D experiment, theory, and simulations to demonstrate that resistive wall tearing modes (RWTM) produce the thermal quench (TQ) in a typical locked mode shot. Analysis of the linear RWTM dispersion relation shows the parameter dependence of the growth rate, particularly on the resistive wall time. Linear simulations of the locked mode equilibrium show that it is unstable with a resistive wall, and stable with an ideally conducting wall. Nonlinear simulations demonstrate that the RWTM grows to sufficient amplitude to cause a complete thermal quench. The RWTM growth time is proportional to the thermal quench time. The nonlinearly saturated RWTM magnetic perturbation amplitude agrees with experimental measurements. The onset condition is that the q = 2 rational surface is sufficiently close to the resistive wall. Collectively, this identifies the RWTM as the cause of the TQ. In ITER, RWTMs will produce long TQ times compared to present-day experiments. ITER disruptions may be significantly more benign than previously predicted.
更多
查看译文
关键词
locked mode disruptions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要