Spin-Valley Depolarization in van der Waals Heterostructures

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2022)

Cited 3|Views28
No score
Abstract
The appearance of van der Waals heterostructures offers a new solution to valleytronics. Here, we observe the spin-valley depolarization process of electrons and holes in type-II MoS2-WSe2 heterostructures simultaneously for the first time by valley-resolved broad-band femtosecond pump-probe experiments. The different depolarization paths between electrons and holes make them have different spin-valley polarization lifetimes. The spin-valley depolarization pathway of holes is mainly dominated by a phonon-assisted intervalley scattering process, while intra- and intervalley coupling can trigger additional depolarization pathways for electrons. The hole polarization lifetime can be further prolonged to more than three times in trilayer heterostructure 2MoS(2)-WSe2. For MoS2-WS2 that has strong orbital hybridization of Mo and W atoms, both electrons and holes lose the spin-valley polarization extremely soon after charge separation, behaving similarly to intraexcitons in a monolayer. Our work advances the basic understanding of spin-valley depolarization of van der Waals heterostructures and facilitates the effort toward longer lifetime valleytronic devices for information transfer and storage applications.
More
Translated text
Key words
spin-valley
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined