Artifact-Assisted multi-level and multi-scale feature fusion attention network for low-dose CT denoising

JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY(2022)

引用 3|浏览6
暂无评分
摘要
BACKGROUND AND OBJECTIVE: Since low-dose computed tomography (LDCT) images typically have higher noise that may affect accuracy of disease diagnosis, the objective of this study is to develop and evaluate a new artifact-assisted feature fusion attention (AAFFA) network to extract and reduce image artifact and noise in LDCT images. METHODS: InAAFFAnetwork, a feature fusion attention block is constructed for local multi-scale artifact feature extraction and progressive fusion from coarse to fine. A multi-level fusion architecture based on skip connection and attention modules is also introduced for artifact feature extraction. Specifically, long-range skip connections are used to enhance and fuse artifact features with different depth levels. Then, the fused shallower features enter channel attention for better extraction of artifact features, and the fused deeper features are sent into pixel attention for focusing on the artifact pixel information. Besides, an artifact channel is designed to provide rich artifact features and guide the extraction of noise and artifact features. The AAPM LDCT Challenge dataset is used to train and test the network. The performance is evaluated by using both visual observation and quantitative metrics including peak signal-noise-ratio (PSNR), structural similarity index (SSIM) and visual information fidelity (VIF). RESULTS: Using AAFFA network improves the averaged PSNR/SSIM/VIF values of AAPM LDCT images from 43.4961, 0.9595, 0.3926 to 48.2513, 0.9859, 0.4589, respectively. CONCLUSIONS: The proposed AAFFA network is able to effectively reduce noise and artifacts while preserving object edges. Assessment of visual quality and quantitative index demonstrates the significant improvement compared with other image denoising methods.
更多
查看译文
关键词
Low-dose computed tomography (LDCT), artifact removal, image denoising, deep learning, multi-scale feature fusion, attention mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要