Experimental investigation on influence of selected chemical treatment on banana fibre

Industrial Crops and Products(2022)

引用 11|浏览2
暂无评分
摘要
This research examined the effect of selected chemical treatment on Banana fibre. The morphological, mechanical and chemical properties effects were investigated using the Scanning electron microscope, computerized Tensile machine and FTIR Instrument. The chemicals applied in fibre treatment were Alkali (NaOH), Permanganate (KmnO4), and Acetylation. The results obtained showed that the surface roughness of the fibres was increased, and the hydrophilic nature of the fibres was reduced. There was a void introduction on the surface of the fibre thereby providing better mechanical locking properties and reduction of water absorption tendency. The results of FT- IR spectroscopy showed gradual changes consistent with the removal of pectin, lignin, Hemicelluloses, oil, and waxes as chemical treatment time increased by comparing the changes in the intensity of the carbonyl-H, OH, CC−H, C−H and CO stretch. It also showed that the number of hydroxyl groups on the fibre surface decreased as treatment time increased. Alkali chemical surface modification treatment of fibres enhanced the properties of the fibres by disrupting hydrogen bonding in their network structure. Permanganate chemical handling accounted for the formation of cellulose radicals with MnO−3 ion formation and fibre surface modification treatment using acetic acid enhanced the reduction of the hygroscopic nature of the banana fibres leading to increased dimensional stability. Mostly, the α cellulose contents of the fibre were increased from 63.40% to 82.23% at Silane chemical handling, while the other major components were reduced comparatively. Mechanical properties of the fibres such as tensile strength, flexural modulus, and percentage elongation increased after chemical treatment. There was an increased loss in weight of fibres with increased chemical modification time which enhanced the mechanical properties of fibre strands.
更多
查看译文
关键词
Banana fibre,Surface treatment,Tensile properties,SEM analysis,FTIR analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要