Learning to Identify Physiological and Adventitious Metal-Binding Sites in the Three-Dimensional Structures of Proteins by Following the Hints of a Deep Neural Network

JOURNAL OF CHEMICAL INFORMATION AND MODELING(2022)

引用 2|浏览21
暂无评分
摘要
Thirty-eight percent of protein structures in the Protein Data Bank contain at least one metal ion. However, not all these metal sites are biologically relevant. Cations present as impurities during sample preparation or in the crystallization buffer can cause the formation of protein-metal complexes that do not exist in vivo. We implemented a deep learning approach to build a classifier able to distinguish between physiological and adventitious zinc-binding sites in the 3D structures of metalloproteins. We trained the classifier using manually annotated sites extracted from the MetalPDB database. Using a 10-fold cross validation procedure, the classifier achieved an accuracy of about 90%. The same neural classifier could predict the physiological relevance of non-heme mononuclear iron sites with an accuracy of nearly 80%, suggesting that the rules learned on zinc sites have general relevance. By quantifying the relative importance of the features describing the input zinc sites from the network perspective and by analyzing the characteristics of the MetalPDB datasets, we inferred some common principles. Physiological sites present a low solvent accessibility of the aminoacids forming coordination bonds with the metal ion (the metal ligands), a relatively large number of residues in the metal environment (>= 20), and a distinct pattern of conservation of Cys and His residues in the site. Adventitious sites, on the other hand, tend to have a low number of donor atoms from the polypeptide chain (often one or two). These observations support the evaluation of the physiological relevance of novel metal-binding sites in protein structures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要