Designing Lactate Dehydrogenase-Mimicking SnSe Nanosheets To Reprogram Tumor-Associated Macrophages for Potentiation of Photothermal Immunotherapy

ACS APPLIED MATERIALS & INTERFACES(2022)

Cited 10|Views11
No score
Abstract
Rapid glycolysis of tumor cells produces excessive lactate to trigger acidification of the tumor microenvironment (TME), leading to the formation of immunosuppressive TME and tumor-associated macrophage (TAM) dysfunction. Therefore, reprogramming TAMs by depleting lactate with nanodrugs is expected to serve as an effective means of tumor-targeted immunotherapy. Herein, we report the use of lactic acid dehydrogenase (LDH)-mimicking SnSe nanosheets (SnSe NSs) loaded with a carbonic anhydrase IX (CAIX) inhibitor to reconstruct an acidic and immunosuppressive TME. As expected, this nanosystem could reprogram the TAM to achieve M1 macrophage activation and could also restore the potent tumor-killing activity of macrophages while switching their metabolic mode from mitochondrial oxidative phosphorylation to glycolysis. In addition, the repolarizing effect of SnSe NSs on macrophages was validated in a coculture model of bone marrow-derived macrophages, in three patient-derived malignant pleural effusion and in vivo mouse model. This study proposes a feasible therapeutic strategy for depleting lactate and thus ameliorating acidic TME employing Se-containing nanosheets, which could further amply the effects of TAM-based antitumor immunotherapy.
More
Translated text
Key words
acidic tumor microenvironment, macrophage polarization, nanozyme, antitumor, immunotherapy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined