Elucidation of the AI-2 communication system in the food-borne pathogen Campylobacter jejuni by whole-cell-based biosensor quantification

Biosensors and Bioelectronics(2022)

Cited 8|Views5
No score
Abstract
The food-borne pathogen Campylobacter jejuni produces autoinducer-2 (AI-2) as an interspecies signalling molecule. AI-2 can trigger enhanced colonisation and biofilm formation, and this poses a serious risk to public health. To date, this communication system of C. jejuni is only partially understood, as detection and quantification of such autoinducer signalling molecules in complex media is hard to achieve. We have developed a whole-cell Vibrio harveyi-based biosensor assay to accurately quantify and follow production of AI-2 by C. jejuni 81–176 in a defined growth medium and in a model food system. Several V. harveyi strains were tested, but the most sensitive bioluminescent response to C. jejuni AI-2 was achieved with V. harveyi MM30, likely due to its ability to self-amplify the response to AI-2. The AI-2 concentrations measured by this biosensor were confirmed using an independent analytical method, HPLC-FLD, which we introduced for Campylobacter analytics for the first time. The AI-2 concentration produced by C. jejuni 81–176 in the model food system was ∼5-fold that in the defined growth medium, at the same cell density. Together with the linear increments in AI-2 concentrations with cell density, this suggests that in C. jejuni, AI-2 represents a metabolic by-product rather than a true quorum-sensing molecule. This biosensor method is highly sensitive, as shown by the reduction in the limit of detection (by a factor of 100) compared to HPLC-FLD, and it enables quantification of AI-2 in complex matrices, such as food, which will help to improve the quality and safety of food production.
More
Translated text
Key words
Campylobacter jejuni,AI-2 quantification,Biosensor method,HPLC-FLD
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined