Self-Assembled Nano-Peptide Hydrogels with Human Umbilical Cord Mesenchymal Stem Cell Spheroids Accelerate Diabetic Skin Wound Healing by Inhibiting Inflammation and Promoting Angiogenesis (vol 17, pg 2459, 2022)

INTERNATIONAL JOURNAL OF NANOMEDICINE(2022)

引用 16|浏览2
暂无评分
摘要
Background: Non-healing skin wounds are a common complication in diabetic patients. Vector biomaterials embedded with mesenchymal stem cells (MSCs) are considered a promising treatment approach. In this study, we presented a novel and effective approach to accelerate diabetic skin wound healing. Methods and Materials: Human umbilical cord mesenchymal stem cells (hUC-MSCs) were shaped into spheres. RADA16-I, KLT, and RGD nanopeptides were selected for self-assembly into hydrogels. hUC-MSCs spheroids (hUC-MSCsp) were combined in vitro with self-assembled nanopeptide hydrogels and subsequently transplanted into a mouse model of diabetic skin trauma. Results: Compared with the PBS, hUC-MSCs, hUC-MSCsp, and hUC-MSCs with hydrogel groups, hUC-MSCsp with hydrogel significantly accelerated wound healing (p<0.01) and shortened the healing time (10 vs 14 vs 21 days). The expressions of IL-6, IL-10, IL-1 beta, and TNF-alpha were significantly decreased (p<0.001). The expression of VEGF was significantly higher in the hUC-MSCsp with hydrogel group (p<0.05), and the density of neovascularization in the fresh skin tissue at the wound was also remarkably increased (p<0.01). Conclusion: Nanopeptide hydrogels loaded with hUC-MSCsp accelerated diabetic skin wound healing by inhibiting inflammation and promoting angiogenesis compared with conventional stem cell transplantation, which deserves further investigation.
更多
查看译文
关键词
diabetic wound, human umbilical cord mesenchymal stem cell, spheroid, nanopeptide hydrogels, treatment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要