Sex Differences in Acute Neuroendocrine Responses to Stressors in Rodents and Humans

COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY(2022)

引用 6|浏览3
暂无评分
摘要
Sex differences in the neuroendocrine response to acute stress occur in both animals and humans. In rodents, stressors such as restraint and novelty induce a greater activation of the hypothalamic-pituitary-adrenal axis (HPA) in females compared to males. The nature of this difference arises from steroid actions during development (organizational effects) and adulthood (activational effects). Androgens decrease HPA stress responsivity to acute stress, while estradiol increases it. Androgenic down-regulation of HPA responsiveness is mediated by the binding of testosterone (T) and dihydrotestosterone (DHT) to the androgen receptor, as well as the binding of the DHT metabolite, 3 beta-diol, to the beta form of the estrogen receptor (ER beta). Estradiol binding to the alpha form of the estrogen receptor (ER alpha) increases HPA responsivity. Studies of human sex differences are relatively few and generally employ a psychosocial paradigm to measure stress-related HPA activation. Men consistently show greater HPA reactivity than women when being evaluated for achievement. Some studies have found greater reactivity in women when being evaluated for social performance. The pattern is inconsistent with rodent studies but may involve the differential nature of the stressors employed. Psychosocial stress is nonphysical and invokes a significant degree of top-down processing that is not easily comparable to the types of stressors employed in rodents. Gender identity may also be a factor based on recent work showing that it influences the neural processing of positive and negative emotional stimuli independent of genetic sex. Comparing different types of stressors and how they interact with gender identity and genetic sex will provide a better understanding of sex steroid influences on stress-related HPA reactivity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要