The Doppler Flip in HD 100546 as a Disk Eruption: The Elephant in the Room of Kinematic Protoplanet Searches

ASTROPHYSICAL JOURNAL LETTERS(2022)

引用 9|浏览16
暂无评分
摘要
The interpretation of molecular-line data using hydrodynamical simulations of planet-disk interactions fosters new hope for the indirect detection of protoplanets. In a model-independent approach, embedded protoplanets should be found at the roots of abrupt Doppler flips in velocity centroid maps. However, the largest velocity perturbation known for an unwarped disk, in the disk of HD 100546, leads to a conspicuous Doppler flip that coincides with a thick dust ring, in contradiction with an interpretation in terms of a greater than or similar to 1 M-jup body. Here we present new ALMA observations of the (CO)-C-12(2-1) kinematics in HD 100546, with a factor of 2 finer angular resolutions. We find that the disk rotation curve is consistent with a central mass 2.1 < M-*/M-circle dot < 2.3 and that the blueshifted side of the Doppler flip is due to vertical motions, reminiscent of the disk wind proposed previously from blueshifted SO lines. We tentatively propose a qualitative interpretation in terms of a surface disturbance to the Keplerian flow, i.e., a disk eruption, driven by an embedded outflow launched by a similar to 10 M-earth body. Another interpretation involves a disk-mass-loading hot spot at the convergence of an envelope accretion streamer.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要