Interference dynamics of matter-waves of SU($N$) fermions

arxiv(2022)

引用 0|浏览9
暂无评分
摘要
We analyze the two main physical observables related to the momenta of strongly correlated SU($N$) fermions in ring-shaped lattices pierced by an effective magnetic flux: homodyne (momentum distribution) and self-heterodyne interference patterns. We demonstrate how their analysis allows us to monitor the persistent current pattern. We find that both homodyne and self-heterodyne interference display a specific dependence on the structure of the Fermi distribution and particles' correlations. For homodyne protocols, the momentum distribution is affected by the particle statistics in two distinctive ways. The first effect is a purely statistical one: at zero interactions, the characteristic hole in the momentum distribution around the momentum $\mathbf{k}=0$ opens up once half of the SU($N$) Fermi sphere is displaced. The second effect originates from interaction: the fractionalization in the interacting system manifests itself by an additional `delay' in the flux for the occurrence of the hole, that now becomes a depression at $\mathbf{k}=0$. In the case of self-heterodyne interference patterns, we are not only able to monitor, but also observe the fractionalization. Indeed, the fractionalized angular momenta, due to level crossings in the system, are reflected in dislocations present in interferograms. Our analysis demonstrate how the study of the interference fringes grants us access to both number of particles and number of components of SU($N$) fermions.
更多
查看译文
关键词
interference,matter-waves
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要