谷歌浏览器插件
订阅小程序
在清言上使用

Hexavalent chromium increases the metabolism and genotoxicity of aromatic amine carcinogens 4-aminobiphenyl and β-naphthylamine in immortalized human lung epithelial cells

Toxicology and Applied Pharmacology(2022)

引用 2|浏览4
暂无评分
摘要
Humans are exposed to carcinogenic chemicals via occupational and environmental exposures. Common chemicals of concern that can occur in exposures together are aromatic amines (e.g., 4-aminobiphenyl [4-ABP] and β-naphthylamine [BNA]) and hexavalent chromium (Cr[VI]). Arylamine N-acetyltransferases 1 and 2 (NAT1 and NAT2) are key to the metabolism of aromatic amines and their genotoxicity. The effects of Cr(VI) on the metabolism of aromatic amines remains unknown as well as how it may affect their ensuing toxicity. The objective of the research presented here is to investigate the effects of Cr(VI) on the metabolism and genotoxicity of 4-ABP and BNA in immortalized human lung epithelial cells (BEP2D) expressing NAT1 and NAT2. Exposure to Cr(VI) for 48 h increased NAT1 activity (linear regression analysis: P < 0.0001) as measured by N-acetylation of para-aminobenzoic acid (PABA) in BEP2D cells but not NAT2 N-acetylation of sulfamethazine, which are prototypic NAT1 and NAT2 substrates respectively. Cr(VI) also increased the N-acetylation of 4-ABP and BNA. In BEP2D cells the N-acetylation of 4-ABP (1–3 μM) exhibited a dose-dependent increase (linear regression analysis: P < 0.05) following co-incubation with 0–3 μM Cr(VI). In BEP2D cells, incubation with Cr(VI) caused dose-dependent increases (linear regression analysis: P < 0.01) in expression of CYP1A1 protein and catalytic activity. For genotoxicity, BEP2D cells were exposed to 4-ABP or BNA with/without Cr(VI) for 48 h. We observed dose-dependent increases (linear regression analysis: P < 0.01) in phospho-γH2AX protein expression for combined treatment of 4-ABP or BNA with Cr(VI). Further using a CYP1A1 inhibitor (α-naphthoflavone) and NAT1 siRNA, we found that CYP1A1 inhibition did not reduce the increased N-acetylation or genotoxicity of BNA by Cr(VI), while NAT1 inhibition did reduce increases in BNA N-acetylation and genotoxicity by Cr(VI). We conclude that during co-exposure of aromatic amines and Cr(VI) in human lung cells, Cr(VI) increased NAT1 activity contributing to increased 4-ABP and BNA genotoxicity.
更多
查看译文
关键词
Chromium,4-Aminobiphenyl,β-Naphthylamine,N-Acetyltransferase 1,Lung cancer,Carcinogenesis,CYP1A1,Genotoxicity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要