Two homeologous MATE transporter genes, NtMATE21 and NtMATE22, are involved in the modulation of plant growth and flavonol transport in Nicotiana tabacum

JOURNAL OF EXPERIMENTAL BOTANY(2022)

引用 4|浏览9
暂无评分
摘要
The multidrug and toxic compound extrusion (MATE) protein family has been implicated in the transport of a diverse range of molecules, including specialized metabolites. In tobacco (Nicotiana tabacum), only a limited number of MATE transporters have been functionally characterized, and no MATE transporter has been studied in the context of flavonoid transport in this plant species so far. In the present study, we characterize two homeologous tobacco MATE genes, NtMATE21 and NtMATE22, and demonstrate their role in flavonol transport and in plant growth and development. The expression of these two genes was reported to be up-regulated in trichomes as compared with the trichome-free leaf. The transcript levels of NtMATE21 and NtMATE22 were found to be higher in flavonol overproducing tobacco transgenic lines as compared with wild type tobacco. The two transporters were demonstrated to be localized to the plasma membrane. Genetic manipulation of NtMATE21 and NtMATE22 led to altered growth phenotypes and modulated flavonol contents in N. tabacum. The beta-glucuronidase and green fluorescent protein fusion transgenic lines of promoter regions suggested that NtMATE21 and NtMATE22 are exclusively expressed in the trichome heads in the leaf tissue and petals. Moreover, in a transient transactivation assay, NtMYB12, a flavonol-specific MYB transcription factor, was found to transactivate the expression of NtMATE21 and NtMATE22 genes. Together, our results strongly suggest the involvement of NtMATE21 and NtMATE22 in flavonol transport as well as in the regulation of plant growth and development. Plasma-membrane-localized MATE family transporters modulate plant growth and are involved in the transport of flavonols in Nicotiana tabacum.
更多
查看译文
关键词
Flavonol transport, gene expression, glandular trichomes, GUS expression, MATE transporter, MYB transcription factor, transgenic tobacco
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要