The kinetic mechanism of cations induced protein nanotubes self-assembly and their application as delivery system

Biomaterials(2022)

引用 14|浏览10
暂无评分
摘要
The amphiphilic proteins can be used as building blocks (BBs) forming various self-assemblies. Understanding their self-assembly mechanism is important for designing novel nanomaterials. Herein, the BBs dimers were first prepared from carboxyl-abundant enzymolyzed α-lactalbumin (α-lac) at 50 °C. Then the unidentate coordination of Ca2+ between the BBs caused a β-sheet stacking to further self-assemble into nanotubes (NTs). Compared with the traditional "one-pot" method, a step-wise new method was applied to study hydrolysis, aggregation and self-assembly processes separately. The α-lac was hydrolyzed into 11 kDa amphiphilic peptides independent of temperature while a BBs dimer was formed at 50 °C by hydrophobic interaction. Ca2+ induced a conformational change of BBs and promoted these BBs gradually aggregate into 10 strands of filaments, which twisted into helical ribbons by electrostatic repulsion. Ca2+ further induced the twisted helical ribbons closed into NTs driven by the reduction of line tension energy. Besides, the carboxyl-Ca2+ coordination dominated NTs elongation in the longitudinal direction and filaments aggregation in the lateral direction with the same binding stoichiometry of 1:1 respectively. Finally, NTs successfully encapsulated curcumin and improved the viscosity of liquid food. α-Lac NTs show a high potential as a delivery system for food applications.
更多
查看译文
关键词
Self-assembly,Nanotubes,Helical structures,Calcium coordination,α-Lactalbumin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要