YAP/TAZ Mediate TGF beta 2-Induced Schlemm's Canal Cell Dysfunction

biorxiv(2022)

引用 1|浏览7
暂无评分
摘要
PURPOSE. Elevated transforming growth factor beta2 (TGF beta 2) levels in the aqueous humor have been linked to glaucomatous outflow tissue dysfunction. Potential mediators of dysfunction are the transcriptional coactivators, Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ). However, the molecular underpinnings of YAP/TAZ modulation in Schlemm's canal (SC) cells under glaucomatous conditions are not well understood. Here, we investigate how TGF beta 2 regulates YAP/TAZ activity in human SC (HSC) cells using biomimetic extracellular matrix hydrogels, and examine whether pharmacological YAP/TAZ inhibition would attenuate TGF beta 2-induced HSC cell dysfunction. METHODS. Primary HSC cells were seeded atop photo-cross-linked extracellular matrix hydrogels, made of collagen type I, elastin-like polypeptide and hyaluronic acid, or encapsulated within the hydrogels. HSC cells were induced with TGF beta 2 in the absence or presence of concurrent actin destabilization or pharmacological YAP/TAZ inhibition. Changes in actin cytoskeletal organization, YAP/TAZ activity, extracellular matrix production, phospho-myosin light chain levels, and hydrogel contraction were assessed. RESULTS. TGF beta 2 significantly increased YAP/TAZ nuclear localization in HSC cells, which was prevented by either filamentous-actin relaxation or depolymerization. Pharmacological YAP/TAZ inhibition using verteporfin without light stimulation decreased fibronectin expression and actomyosin cytoskeletal rearrangement in HSC cells induced by TGF beta 2. Similarly, verteporfin significantly attenuated TGF beta 2-induced HSC cell-encapsulated hydrogel contraction. CONCLUSIONS. Our data provide evidence for a pathologic role of aberrant YAP/TAZ signaling in HSC cells under simulated glaucomatous conditions and suggest that pharmacological YAP/TAZ inhibition has promising potential to improve outflow tissue dysfunction.
更多
查看译文
关键词
POAG, mechanotransduction, TM stiffness, hydrogel, actin cytoskeleton
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要