A new active learning approach for adsorbate–substrate structural elucidation in silico

Journal of Molecular Modeling(2022)

引用 4|浏览12
暂无评分
摘要
Adsorbate interactions with substrates (e.g. surfaces and nanoparticles) are fundamental for several technologies, such as functional materials, supramolecular chemistry, and solvent interactions. However, modeling these kinds of systems in silico, such as finding the optimum adsorption geometry and energy, is challenging, due to the huge number of possibilities of assembling the adsorbate on the surface. In the current work, we have developed an artificial intelligence (AI) approach based on an active learning (AL) method for adsorption optimization on the surface of materials. AL uses machine learning (ML) regression algorithms and their uncertainties to make a decision (based on a policy) for the next unexplored structures to be computed, increasing, though, the probability of finding the global minimum with a small number of calculations. The methodology allows an accurate and automated structural elucidation of the adsorbate on the surface, based on the minimization of the total electronic energy. The new AL method for adsorption optimization was developed and implemented in the quantum machine learning software/agent for material design and discovery (QMLMaterial) program and was applied for C 60 @TiO 2 anatase (101). It marks another software extension with a new feature in addition to the automatic structural elucidation of defects in materials and of nanoparticles as well. SCC-DFTB calculations were used to build the complex search surfaces with a reasonably low computational cost. An artificial neural network (NN) was employed in the AL framework evaluated together with two uncertainty quantification methods: K-fold cross-validation and non-parametric bootstrap (BS) resampling. Also, two different acquisition functions for decision-making were used: expected improvement ( EI ) and the lower confidence bound ( LCB ). Graphical abstract
更多
查看译文
关键词
Functional materials,Adsorption,Machine learning,Active learning,SCC-DFTB
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要