Space-time resolved inference-based whole-brain neurophysiological mechanism imaging: application to resting-state alpha rhythm

biorxiv(2022)

引用 0|浏览6
暂无评分
摘要
Neural mechanisms are complex and difficult to image. This paper presents a new space-time resolved whole-brain imaging framework, called Neurophysiological Mechanism Imaging (NMI), that identifies neurophysiological mechanisms within cerebral cortex at the macroscopic scale. By fitting neural mass models to electromagnetic source imaging data using a novel nonlinear inference method, population averaged membrane potentials and synaptic connection strengths are efficiently and accurately imaged across the whole brain at a resolution afforded by source imaging. The efficiency of the framework enables return of the augmented source imaging results overnight using high performance computing. This suggests it can be used as a practical and novel imaging tool. To demonstrate the framework, it has been applied to resting-state magnetoencephalographic source estimates. The results suggest that endogenous inputs to cingulate, occipital, and inferior frontal cortex are essential modulators of resting-state alpha power. Moreover, endogenous input and inhibitory and excitatory neural populations play varied roles in mediating alpha power in different resting-state sub-networks. The framework can be applied to arbitrary neural mass models and has broad applicability to image neural mechanisms in different brain states. Highlights ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
neurophysiological mechanism imaging,whole-brain whole-brain,space-time,inference-based,resting-state
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要