Concentration- and time-dependence toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets upon zebrafish liver cell line.

Aquatic toxicology (Amsterdam, Netherlands)(2022)

Cited 10|Views10
No score
Abstract
Graphene oxide (GO) and reduced graphene oxide (rGO) are carbon-based nanomaterials that have a wide range of applicability. Therefore, it is expected that their residual traces reach the aquatic environment, accumulate, and interact with its different compartments and the biota living in them. The concentration- and time-dependency response to GO and rGO in aquatic organisms are still poorly known. In the present study, the effects of GO and rGO on zebrafish hepatocytes were investigated using in vitro assays performed with established liver cell lines from zebrafish (ZFL). GO and rGO nanosheets were applied on ZFL cells at a concentration range of 1-100 µg mL-1 for 24 and 72 h. The internalization of GO and rGO nanosheets, reactive oxygen species (ROS) production, cell viability, and cell death were evaluated. The internalization of GO increased as the concentrations of GO increased. The rGO nanosheets were smaller than GO nanosheets, and their hydrophobic characteristic favors their interaction with the cell membrane. However, the rGO nanosheets were not observed in the uptake assay. Exposure for 72 h was found to cause harmful effects in ZFL cells, causing higher ROS production in cells exposed to rGO and stopping cell replication. Nevertheless, GO did not stop cell replication, but exposed cells had higher levels of apoptosis and necrosis. After 72 h, both GO and rGO were toxic, but with different mechanisms of toxicity.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined