The Evolution and Mass Dependence of Galaxy Cluster Pressure Profiles at 0.05 $\le z \le$ 0.60 and $4 \times 10^{14}$ M$_{\odot}$ $\le \textrm{M}_{500} \le 30 \times 10^{14}$ M$_{\odot}$

arxiv(2023)

引用 1|浏览32
暂无评分
摘要
We have combined X-ray observations from Chandra with Sunyaev-Zel'dovich (SZ) effect data from Planck and Bolocam to measure intra-cluster medium pressure profiles from 0.03R$_{500}$ $\le$ R $\le$ 5R$_{500}$ for a sample of 21 low-$z$ galaxy clusters with a median redshift $\langle z \rangle = 0.08$ and a median mass $\langle \textrm{M}_{500} \rangle = 6.1 \times 10^{14}$ M$_{\odot}$ and a sample of 19 mid-$z$ galaxy clusters with $\langle z \rangle = 0.50$ and $\langle \textrm{M}_{500} \rangle = 10.6 \times 10^{14}$ M$_{\odot}$. The mean scaled pressure in the low-$z$ sample is lower at small radii and higher at large radii, a trend that is accurately reproduced in similarly selected samples from The300 simulations. This difference appears to be primarily due to dynamical state at small radii, evolution at intermediate radii, and a combination of evolution and mass dependence at large radii. Furthermore, the overall flattening of the mean scaled pressure profile in the low-$z$ sample compared to the mid-$z$ sample is consistent with expectations due to differences in mass accretion rate and the fractional impact of feedback mechanisms. In agreement with previous studies, the fractional scatter about the mean scaled pressure profile reaches a minimum of $\simeq 20$ per cent near 0.5R$_{500}$. This scatter is consistent between the low-$z$ and mid-$z$ samples at all radii, suggesting it is not strongly impacted by sample selection, and this general behavior is reproduced in The300 simulations. Finally, analytic functions that approximately describe the mass and redshift trends in mean pressure profile shape are provided.
更多
查看译文
关键词
galaxy cluster pressure profiles,mass dependence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要