A Pitx3-deficient developmental mouse model for fine motor, olfactory, and gastrointestinal symptoms of Parkinson's disease

Neurobiology of Disease(2022)

引用 2|浏览6
暂无评分
摘要
Parkinson's disease (PD) is characterized by the selective death of substantia nigra pars compacta (SNpc) dopaminergic neurons and includes both motor and non-motor symptoms. While numerous models exist for the study of typical PD motor deficits, fewer exist for non-motor symptoms. Previous studies have shown that a Pitx3−/− mouse model (aphakia or ak mouse) has specific developmental failure of the dopaminergic neuron population in the SNpc and that it can be used for the study of PD-related gross motor dysfunction as well as cognitive functional deficits. It remains unclear whether the aphakia mouse, both male and female, might also be used to model fine motor deficits and for additional studies of non-motor deficits associated with PD. Here, using an extensive battery of behavioral tests, we demonstrate that the aphakia mouse shows both gross and fine motor functional deficits compared with control mice. Furthermore, aphakia mice show deficits of olfactory function in buried pellet, odor discrimination and odor habituation/dishabituation tests. We also found that aphakia mice suffer from gastrointestinal dysfunction (e.g., longer whole gut transit time and colon motility deficits), suggesting that the mutation also affects function of the gut-brain axis in this animal model. Moreover, our data demonstrate that in the aphakia mouse, L-DOPA, the gold standard PD medication, can rescue both gross and fine motor function deficits but neither olfactory nor gastrointestinal symptoms, a pattern much like that seen in PD patients. Altogether, this suggests that the aphakia mouse is a suitable model for fine motor, olfactory and gastrointestinal behavioral studies of PD as well as for the development of novel disease-modifying therapeutics.
更多
查看译文
关键词
Parkinson's disease,Pitx3,motor function,olfactory function,gastrointestinal function,inflammation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要