Toxic Effects on Oxidative Stress, Neurotoxicity, Stress, and Immune Responses in Juvenile Olive Flounder, Paralichthys olivaceus, Exposed to Waterborne Hexavalent Chromium

BIOLOGY-BASEL(2022)

引用 10|浏览0
暂无评分
摘要
Simple Summary Metals such as chromium can be exposed at high levels in the marine environment, and exposure to these heavy metals can have a direct effect on marine organisms. High levels of chromium exposure can have a direct impact on organisms in a coastal cage and terrestrial aquaculture. Hexavalent chromium exposure of more than 1.0 and 2.0 mg Cr6+/L induced physiological responses such as antioxidant, neurotransmitter, immune, and stress indicators in Paralichthys olivaceus. Therefore, this study will provide a reference indicator for stable aquaculture production through reference indicators for toxicity due to chromium exposure that may exist in the marine environment. Juvenile Paralichthys olivaceus were exposed to waterborne hexavalent chromium at various concentrations (0, 0.5, 1.0, and 2.0 mg/L) for 10 days. After chromium exposure, the activities of superoxide dismutase and glutathione S-transferase, which are oxidative stress indicators, were significantly increased; however, the glutathione level was significantly reduced. Acetylcholinesterase activity as a neurotoxicity marker was significantly inhibited upon chromium exposure. Other stress indicators, including plasma cortisol and heat shock protein 70, were significantly increased. The immune response markers (lysozyme and immunoglobulin M) were significantly decreased after chromium exposure. These results suggest that exposure to environmental toxicity in the form of waterborne chromium at concentrations higher than 1.0 mg/L causes significant alterations in antioxidant responses, neurotransmitters, stress, and immune responses in juvenile olive flounders. This study will provide a basis for an accurate assessment of the toxic effects of hexavalent chromium on aquatic organisms.
更多
查看译文
关键词
hexavalent chromium, antioxidant responses, neurotransmitter, stress responses, immune responses
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要