Universality in Anderson localization on random graphs with varying connectivity

arxiv(2023)

引用 1|浏览2
暂无评分
摘要
We perform a thorough and complete analysis of the Anderson localization transition on several models of random graphs with regular and random connectivity. The unprecedented precision and abundance of our exact diagonalization data (both spectra and eigenstates), together with new finite size scaling and statistical analysis of the graph ensembles, unveils a universal behavior which is described by two simple, integer, scaling exponents. A by-product of such analysis is a reconciliation of the tension between the results of perturbation theory coming from strong disorder and earlier numerical works, which seemed to suggest that there should be a non-ergodic region above a given value of disorder $W_{E}$ which is strictly less than the Anderson localization critical disorder $W_C$, and that of other works which suggest that there is no such region. We find that, although no separate $W_{E}$ exists from $W_C$, the length scale at which fully developed ergodicity is found diverges like $|W-W_C|^{-1}$, while the critical length over which delocalization develops is $\sim |W-W_C|^{-1/2}$. The separation of these two scales at the critical point allows for a true non-ergodic, delocalized region. In addition, by looking at eigenstates and studying leading and sub-leading terms in system size-dependence of participation entropies, we show that the former contain information about the non-ergodicity volume which becomes non-trivial already deep in the delocalized regime. We also discuss the quantitative similarities between the Anderson transition on random graphs and many-body localization transition.
更多
查看译文
关键词
anderson localization,random graphs,connectivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要