Synergistic Entry of Individual Nanoparticles into Mammalian Cells Driven by Free Energy Decline and Regulated by Their Sizes

ACS NANO(2022)

引用 11|浏览12
暂无评分
摘要
Cell entry is one of the common prerequisites for nanomaterial applications. Despite extensive studies on a homogeneous group of nanoparticles (NPs), fewer studies have been performed when two or more types of NPs were coadministrated. We previously described a synergistic cell entry process for two heterogeneous groups of NPs, where NPs functionalized with TAT (transactivator of transcription) peptide (T-NPs) stimulate the cellular uptake of coadministered unfunctionalized NPs (bystander NPs, B-NPs). Here, we show that the synergistic cell entry of NPs is driven by free energy decline and depends on B-NP sizes. Simulations showed that when separately placed initially, two NPs first move toward each other instead of initiating cell entry individually. Only T-NP invokes an inward bending of membrane mimicking endocytosis, which attracts the nearby NPs into the same "vesicle". A two-phase free energy decline of the entire system occurred as two NPs get closer until contact, which is likely the thermodynamic driver for synergistic NP coentry. Experimentally, we found that T-NPs increase the apparent affinity of B-NPs to plasma membrane, suggesting that T-NPs help B-NPs "trapped" in the endocytic vesicles. Next, we varied the sizes of B-NPs and found that bystander activity peaks around 50 nm. Simulations also showed that the size of B-NPs influences the free energy decline, and thus the tendency and dynamics of NP coentry. These efforts provide a system to further understand the synergistic cell entry among individual NPs or multiple NP types on a biophysical basis and shed light on the future design of nanostructures for intracellular delivery.
更多
查看译文
关键词
synergistic nanomaterial internalization,bystander uptake,computation simulation,free energy,size dependency
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要