Green Hierarchical Vision Transformer for Masked Image Modeling

NeurIPS 2022(2022)

引用 47|浏览106
暂无评分
摘要
We present an efficient approach for Masked Image Modeling (MIM) with hierarchical Vision Transformers (ViTs), allowing the hierarchical ViTs to discard masked patches and operate only on the visible ones. Our approach consists of three key designs. First, for window attention, we propose a Group Window Attention scheme following the Divide-and-Conquer strategy. To mitigate the quadratic complexity of the self-attention w.r.t. the number of patches, group attention encourages a uniform partition that visible patches within each local window of arbitrary size can be grouped with equal size, where masked self-attention is then performed within each group. Second, we further improve the grouping strategy via the Dynamic Programming algorithm to minimize the overall computation cost of the attention on the grouped patches. Third, as for the convolution layers, we convert them to the Sparse Convolution that works seamlessly with the sparse data, i.e., the visible patches in MIM. As a result, MIM can now work on most, if not all, hierarchical ViTs in a green and efficient way. For example, we can train the hierarchical ViTs, e.g., Swin Transformer and Twins Transformer, about 2.7$\times$ faster and reduce the GPU memory usage by 70%, while still enjoying competitive performance on ImageNet classification and the superiority on downstream COCO object detection benchmarks. Code and pre-trained models have been made publicly available at https://github.com/LayneH/GreenMIM.
更多
查看译文
关键词
Self-Supervised Learning,Masked Image Modeling,Vision Transformers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要