Subpicosecond Optical Stress Generation in Multiferroic BiFeO3

NANO LETTERS(2022)

引用 3|浏览36
暂无评分
摘要
Optical excitation leads to ultrafast stress generation in the prototypical multiferroic BiFeO3. The time scales of stress generation are set by the dynamics of the population of excited electronic states and the coupling of the electronic configuration to the structure. X-ray free-electron laser diffraction reveals high-wavevector subpicosecond-time scale stress generation following ultraviolet excitation of a BiFeO3 thin film. Stress generation includes a fast component with a 1/e rise time with an upper limit of 300 fs and longer-rise time components extending to 1.5 ps. The contributions of the fast and delayed components vary as a function of optical fluence, with a reduced a fast-component contribution at high fluence. The results provide insight into stress-generation mechanisms linked to the population of excited electrons and point to new directions in the application of nanoscale multiferroics and related ferroic complex oxides. The fast component of the stress indicates that structural parameters and properties of ferroelectric thin film materials can be optically modulated with 3 dB bandwidths of at least 0.5 THz.
更多
查看译文
关键词
ultrafast stress, multiferroics, free electron laser dynamics, photoexcitation, nanoscale electronic materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要