Time-dependent density matrix renormalization group method for quantum dynamics in complex systems

WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE(2022)

引用 15|浏览8
暂无评分
摘要
The simulations of spectroscopy and quantum dynamics are of vital importance to the understanding of the electronic processes in complex systems, including the radiative/radiationless electronic relaxation relevant for optical emission, charge/energy transfer in molecular aggregates related to carrier mobility in organic materials, as well as photovoltaic and thermoelectric conversion, light-harvesting and spin transport, and so forth. In recent years, time-dependent density matrix renormalization group (TD-DMRG) has emerged as a general, numerically accurate and efficient method for high-dimensional full-quantum dynamics. This review will cover the fundamental algorithms of TD-DMRG in the modern framework of matrix product states (MPS) and matrix product operators (MPO), including the basic algebra with respect to MPS and MPO, the novel time evolution schemes to propagate MPS, and the automated MPO construction algorithm to encode generic Hamiltonian. Most importantly, the proposed method can handle the mixed state density matrix at finite temperature, enabling quantum statistical description for molecular aggregates. We demonstrate the performance of TD-DMRG by benchmarking with the current state-of-the-art methods for simulating quantum dynamics of the spin-boson model and the Frenkel-Holstein(-Peierls) model. As applications of TD-DMRG to real-world problems, we present theoretical investigations of carrier mobility and spectral function of rubrene crystal, and the radiationless decay rate of azulene with an anharmonic potential energy surface. This article is categorized under: Theoretical and Physical Chemistry > Statistical Mechanics Theoretical and Physical Chemistry > Reaction Dynamics and Kinetics Software > Simulation Methods
更多
查看译文
关键词
density matrix renormalization group, matrix product operator, matrix product state, quantum dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要