谷歌浏览器插件
订阅小程序
在清言上使用

Mode-I fracture control of unidirectional laminated composites using MFC actuators

JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES(2022)

引用 2|浏览1
暂无评分
摘要
This article presents an experimental and numerical investigation of Mode-I fracture control in aerospace grade unidirectional laminated composites (AS4/914) using the smart material approach. The P1 type macro fiber composites (MFC) actuators are selected for current research because of their higher free strain, high mechanical flexibility, and good blocking force. The opening mode (Mode-I) interlaminar fracture tests have been carried out on DCB specimens having surface bonded MFC actuator patches under the application of electric voltage within a range of 0-1500 V. These fracture control tests have been performed on pre-cracked (PC) and non pre-cracked (NPC) double cantilever beam specimens. The modified pin force model has been adopted for the evaluation of actuation forces in surface bonded MFC actuators. The XIGA-CZM based numerical formulation is utilized for numerical fracture modeling under electromechanical loading conditions. The MFC actuators have significant control over Mode-I fracture energy under the application of peak operating voltage. The numerical model using a modified pin force model in combination with XIGA-CZM based fracture model shows a good agreement with experimental observations.
更多
查看译文
关键词
Macro fiber composite (MFC) actuator, pin force model, cohesive zone modeling, Extended Isogeometric analysis (XIGA), crack suppression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要