Localization of nuclear materials in large concrete radioactive waste packages using photofission delayed gamma rays

ANIMMA 2021 - ADVANCEMENTS IN NUCLEAR INSTRUMENTATION MEASUREMENT METHODS AND THEIR APPLICATIONS(2021)

引用 3|浏览4
暂无评分
摘要
The characterization of radioactive waste packages is mandatory for their transport, interim storage and final disposal. In this framework, the Nuclear Measurement Laboratory of CEA DES IRESNE Institute, at Cadarache, France, uses a high-energy electron linear accelerator (LINAC) to produce an interrogating bremsstrahlung beam with endpoint energies ranging from 9 to 21 MeV to perform X-ray imaging and high-energy photon interrogation on large concrete packages. In particular, high-energy photon beam induces photofission reactions in both fissile (U-235, Pu-239, Pu-241) and fertile (U-238, Pu-240, Th-232, etc.) actinides possibly present in the radioactive waste. In order to assess their mass, we use delayed gamma rays emitted by their photofission products, which are measured with a 50 % relative efficiency High-Purity Germanium (HPGe) detector. Actinide differentiation, which is important for the fissile mass estimation, is based on the ratios of gamma rays emitted by different photofission products and requires appropriate corrections for the gamma attenuation in concrete. To this aim, we report here a localization method of point-like nuclear materials in the concrete matrix, based on the differential attenuation of several gamma rays emitted by a same photofission product. We use here the 1435.9 and 2639.6 keV lines of Cs-138, with both experimental data and MCNP numerical simulations to determine the (r, theta) coordinates of nuclear materials. Then, the depth inside the concrete matrix, which is determined with a precision of a few percent, mainly depending on counting statistics on 1435.9 and 2639.6 keV net peak areas, is used to correct for the different gamma ratios used in the actinide identification method. Experimental tests with uranium samples have been performed to validate the localization method.
更多
查看译文
关键词
Photofission, Uranium, Delayed gamma rays, Bremsstrahlung, MCNP, Concrete matrix, Nuclear material localization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要