An Integrative Volatile Terpenoid Profiling and Transcriptomics Analysis in Hoya cagayanensis, Hoya lacunosa and Hoya coriacea (Apocynaceae, Marsdenieae)

HORTICULTURAE(2022)

引用 2|浏览7
暂无评分
摘要
Hoya's R.Br. attractive flower shapes and unique scents make it suitable to be exploited as a new source of tropical fragrance. Therefore, this study aims to elucidate the biosynthesis of secondary metabolites using phytochemical and transcriptomic approaches to understand the mechanisms of scents biosynthesis, especially terpenoid in Hoya. Three Hoya flower species were selected in this study: Hoya cagayanensis, Hoya lacunosa, and Hoya coriacea. The secondary metabolite profiles characterizing scents on flowers were performed using head space solid phase microextraction (HS-SPME). Gas chromatography-mass spectrometry (GC-MS) revealed 23 compounds from H. cagayanensis, 14 from H. lacunose, and 36 from H. coriacea. Volatiles from the three species had different fragrance profiles, with beta-ocimene and methyl salicylate compounds dominating the odor in H. cagayanensis. The 1-octane-3-ol was found highest in H. lacunosa, and (Z)-acid butyric, 3-hexenyl ester was found highest in H. coriacea. Subsequent studies were conducted to identify the biosynthesis pathway of secondary metabolites responsible for the aroma profile released by Hoya flowers through transcriptome sequencing using the Illumina Hiseq 4000 platform. A total of 109,240 (75.84%) unigenes in H. cagayanensis, 42,479 (69.00%) in H. lacunosa and 72,610 (70.55%) in H. coriacea of the total unigenes were successfully annotated using public databases such as NCBI-Nr, KEGG, InterPro, and Gene Ontology (GO). In conclusion, this study successfully identified the complete outline of terpenoid biosynthesis pathways for the first time in Hoya. This discovery could lead to the exploitation of new knowledge in producing high-value compounds using the synthetic biology approach.
更多
查看译文
关键词
Hoya, floral volatile, HS-SPME, GC-MS, transcriptome, terpenoid biosynthesis pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要