Volcanic events coincide with plant dispersal across the Northern Andes

Global and Planetary Change(2022)

引用 4|浏览11
暂无评分
摘要
Biological dispersal is increasingly seen as a primary driver of speciation across the tropical Andes. Similarly, growing evidence suggests that the Northern Andes cordilleras formed as disconnected segments, at least until the late Miocene. For montane species, this discontinuity can hinder dispersal to the different mountain segments. Hence, understanding which processes involved in mountain formation are related to species capacity to disperse between mountains is crucial to understanding Andean biogeography. Volcanic eruptions are known to affect biodiversity in different ways, but their effects on species connectivity through the creation of topographic growth remains largely unknown. Species that are distributed in the different geographic units of the Andes can be informative with respect to how and when the different mountains have formed. The wax palms, genus Ceroxylon, comprise 13 strictly Andean species of which three species complexes are widely distributed in the tropical Andes, inhabiting cloud forests at elevations of 1400–3500 m. We sequenced 129 individuals of all but one described species using target sequence capture to reconstruct the phylogenetic history of Ceroxylon. We inferred chronograms using secondary calibrations and demographic modeling, which along with ancestral area reconstructions, allowed us to estimate the relative contributions of dispersal and speciation in the diversification history of Ceroxylon. Geological samples of ignimbritic rocks record a Plio-Pleistocene volcanic eruption of great magnitude that connected the three Colombian cordilleras by increasing topographic growth where a former lowland pass disconnected the northern mountain segments. The timing of this topographic change coincides with an increase in dispersal events to the Western and Central Cordilleras of Colombia from adjacent Andean cordilleras (i.e. the Andes outside of Colombia). Taken together, we determine that local topographic growth resulting from volcanic eruptions played a key role in augmenting mountain chain connectivity by uplift and valley filling, which favored dispersal throughout the Northern Andes. We can spatially and temporally link a biogeographical distribution pattern to a traceable geological event.
更多
查看译文
关键词
Biogeography,Ceroxylon,Geochronology,Topographic evolution,Phylogeny,Target sequence capture
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要