Parametric study of residual stress formation in Wire and Arc Additive Manufacturing

JOURNAL OF MANUFACTURING PROCESSES(2022)

引用 16|浏览2
暂无评分
摘要
A finite element model was created to simulate the Wire Arc Additive Manufacturing (WAAM) thermal and mechanical processes of Inconel 718 on a A36 steel substrate, as well as the effects of process parameters on Residual Stress (RS). The model was verified using temperature data obtained from three thermocouples attached to the upper surface of the build substrate and micro-strain measurements obtained from Neutron Diffraction (ND) measurement. The model was then used to study the effects of changing the torch travel speed and interlayer dwell time. The study found that travel speed has little effect on RS when maintaining the same heat input rate. As well, the interlayer dwell time has a strong effect on RS. Reducing the dwell time causes the stress profiles to become relatively uniform and a high-stress region extends deeper along the build direction. This study provides important insight into mechanical stresses inside large walls made by the WAAM method.
更多
查看译文
关键词
Residual stress, Neutron diffraction, Numerical simulation, Wire Arc Additive Manufacturing (WAAM)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要