Impact of Chitosan, Sucrose, Glucose, and Fructose on the Postharvest Decay, Quality, Enzyme Activity, and Defense-Related Gene Expression of Strawberries

HORTICULTURAE(2021)

引用 4|浏览4
暂无评分
摘要
Strawberry is one of the most highly consumed fruits worldwide, but is extremely perishable. This study systematically compared the effects of chitosan, sucrose, glucose, and fructose immersion on the physiology and disease development in harvested strawberries. After storage at 15 degrees C for 9 days, all sugar treatment groups had significantly higher total soluble solids and total anthocyanin content than those of the control group. All sugar treatment groups inhibited malondialdehyde accumulation. At the end of the storage, chitosan, glucose, and fructose maintained higher superoxide dismutase activity and chitosan maintained higher catalase activity. The chitosan and glucose groups had lowest fruit decay index, followed by sucrose and fructose groups. The fruit firmness and luster were better maintained in the glucose group. Furthermore, genes related to sucrose metabolism (e.g., FaSUS1 and FaSUS2), titratable acidity accumulation (e.g., FaMDH1, FaMDH2, FaCS1, and FaCS2), disease resistance (e.g., FaPGIP1, FaWRKY1, and FaWRKY33) and to anabolic jasmonic acid and abscisic acid pathways (e.g., FaJAZ1, FaJAZ2, FaOPR3, FaNCED1, and FaNCED2) were regulated to varying degrees, suggesting that chitosan and glucose participate in plants' immune signaling networks and regulate disease resistance in fruit through hormone pathways. The findings provide new insights into the physiological regulation of harvested strawberries.
更多
查看译文
关键词
Fragaria x ananassa, chitosan, sucrose, glucose, fructose, postharvest
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要