A real-time obstacle avoidance and path tracking strategy for a mobile robot using machine-learning and vision-based approach

SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL(2022)

引用 4|浏览0
暂无评分
摘要
In this paper, an obstacle avoidance and target tracking method for both indoor and outdoor mobile robots in dynamic environment is presented, and it aims to enhance autonomous navigation capability of such robots. In the proposed method, image processing and machine-learning approaches are considered. Since obstacles have differences in color and texture and in order to identify non-navigable areas, a monocular onboard camera is used to capture the road lanes by dealing with an image processing technique. The position of the robot with respect to road lane center during navigation is calculated on the basis of a proposed fuzzy logic rules set. In order to provide fast and robust computation, the Haar cascade classifier-based machine-learning technique has been exploited to detect the different sizes and shapes of the obstacles faced by the robot during its movement from source to destination. The dynamic model of a four-wheel mobile robot is initially developed using bond graph theory and then, the proposed obstacle-avoidance strategy is applied. The effectiveness and performance of the proposed method are tested under various simulation and experimentation scenarios. The behavior of the mobile robot for detecting and avoiding static obstacle for single and double road lane change environment is analyzed and discussed.
更多
查看译文
关键词
Machine-learning, image processing, fuzzy logic, obstacle avoidance, mobile robot, bond graph modeling, experimental validation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要