Hydrocarbon Bio-Jet Fuel from Bioconversion of Poplar Biomass: Life Cycle Assessment of Site-Specific Impacts

Erik Budsberg, Nathan Parker, Varaprasad Bandaru, Renata Bura, Rick Gustafson

FORESTS(2022)

引用 1|浏览14
暂无评分
摘要
Hydrocarbon drop-in bio-jet fuels could help to reduce greenhouse gas emissions within the aviation sector. Large tracts of land will be required to grow biomass feedstock for this biofuel, and changes to the management of these lands could have substantial environmental impacts. This research uses spatial analysis and life cycle assessment methodologies to investigate potential environmental impacts associated with converting land to grow poplar trees for conversion to bio-jet fuel from different regions within the western United States. Results vary by region and are dependent on land availability, type of land converted, prior land management practices, and poplar growth yields. The conversion of intensively managed cropland to poplar production results in a decrease in fertilizer and a lower annual global warming potential (GWP) (Clarksburg CA region). Bringing unmanaged rangeland into production results in increases in fertilizers, chemical inputs, fuel use, and GWP (Jefferson OR region). Where poplar yields are predicted to be lower, more land is converted to growing poplar to meet feedstock demands (Hayden ID). An increased use of land leads to greater fuel use and GWP. Changes to land use and management practices will drive changes at the local level that need to be understood before developing a drop-in biofuels industry.
更多
查看译文
关键词
biofuels,drop-in biofuels,hydrocarbon biofuels,life cycle assessment,spatial analysis,regional environmental impacts,poplar biomass
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要