Diffraction-grating beam splitter, interferometric-lithography nanopatterning with a multilongitudinal-mode diode laser

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B(2021)

引用 0|浏览1
暂无评分
摘要
Large-area, oblique-incidence interferometric nanopatterning using a low-cost multilongitudinal-mode diode laser as the source and a spin-on-glass based diffraction-phase-mask grating beam splitter is demonstrated. The phase mask is engineered to have only two equal intensity orders (0th and -1st), dramatically simplifying the optical arrangement and decreasing the propagation distance between the beam splitter and the sample. The low-cost, high-power (150 mW) TEM00 405-nm diode laser operates with a large number of longitudinal modes, resulting in an impractical mask-to-sample-gap proximity requirement. A dual-grating-mask, achromatic interferometric scheme is introduced to extend this gap dimension to easily accessible scales. Uniform nanopatterns with a periodicity of 600 nm were fabricated over a 1 cm diameter area using this multimode diode laser. This technique is scalable and has the potential for large-area nanopatterning applications. (c) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(http://creativecommons.org/licenses/by/4.0/).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要