SIMULATION OF UNIAXIAL COMPRESSION FOR FLEXIBLE FIBERS OF WHEAT STRAW USING THE DISCRETE ELEMENT METHOD

TRANSACTIONS OF THE ASABE(2021)

引用 3|浏览0
暂无评分
摘要
To accurately simulate a discrete element method (DEM) model, the material properties must be calibrated to reproduce bulk material behavior. In this study, a method was developed to calibrate DEM parameters for bulk fibrous materials using uniaxial compression. Wheat straw was cut to 100.2 mm lengths. A 227 mm diameter cylindrical container was loosely filled with the cut straw. The material was pre-compressed to 1 kPa. A plunger (50, 150, or 225 mm diameter) was then lowered onto the compressed straw at a rate of 15 mm s(-1). This experimental procedure was simulated using a DEM model for different material properties to generate a simulated design of experiment (DOE). The simulated plunger had a travel rate of 40 mm s-1. The contact Young's modulus, bond Young's modulus, and particle-to-particle friction DEM parameters were found to be statistically significant in the prediction of normal forces on the plunger in the uniaxial compression test. The DEM calibration procedure was used to approximate the mean laboratory results of wheat straw compression with root mean square (RMS) percent errors of 3.77%, 3.02%, and 13.90% for the 50, 150, and 225 mm plungers, respectively.
更多
查看译文
关键词
Calibration, DEM, DOE, Flexible DEM particle, Uniaxial compression, Wheat straw
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要