Chrome Extension
WeChat Mini Program
Use on ChatGLM

Mass removal efficiencies in water and consequences after a river diversion into coastal wetlands: second thoughts

HYDROBIOLOGIA(2024)

Cited 1|Views6
No score
Abstract
Salinity control, nutrient additions, and sediment supply were directly or indirectly the rationale for a $220 million coastal wetland restoration project (Davis Pond River Diversion) that began in 2002. We sampled Mississippi River water going in and out of the receiving basin from 1999 to 2018 to understand why wetland loss increased after it began. There was a reduction in inorganic sediments, nitrogen (N), and phosphorus (P) concentrations within the ponding area of 77%, 39% and 34%, respectively, which is similar to that in other wetlands. But the average sediment accumulation of 0.6 mm year(-1) inadequately balances the present-day 5.6 mm year(-1) sea level rise or the 7.9 +/- 0.13 mm year(-1) accretion rates in these organic soils. Nutrients added likely reduced live belowground biomass and soil strength, and increased decomposition of the organic matter necessary to sustain elevations. The eutrophication of the downstream aquatic system from the diversion, principally by P additions, increased Chl a concentrations to a category of 'poor' water quality. We conclude that this diversion, if continued, will be a negative influence on wetland area and will eutrophy the estuary. It is a case history example for understanding the potential effects arising from proposed river diversions.
More
Translated text
Key words
Nutrient removal,Wetland gain and loss,Restoration,River diversion,Eutrophication
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined