Slip-Line Solution to Earth Pressure of Narrow Backfill against Retaining Walls on Yielding Foundations

INTERNATIONAL JOURNAL OF GEOMECHANICS(2022)

引用 4|浏览1
暂无评分
摘要
When a retaining wall is adjacent to a natural slope, the overturning of the wall is usually caused by a yielding foundation. At the point of overturning, the narrow backfill behind the wall has reached the active limit state. However, in previous studies, the foundation conditions of the retaining wall were not fully considered when the earth pressure on the retaining wall with the narrow backfill was calculated. To comprehensively consider the stress state of the retaining wall, the finite-element limit analysis method was employed to study the failure mode of a retaining wall adjacent to a natural slope. The simulation results indicate that the sliding surface starts from the wall heel, with one side developing at the surface of the natural slope and the other developing in the ground in front of the wall. Based on this failure mechanism, a slip-line computational model for the retaining wall was established. When the slip-line solution was compared with the finite-element solution, the results were in good agreement. The plastic zone of the soil was determined by the slip-line field. In addition, the slip-line solution gave the active earth pressure of the narrow backfill, the passive earth pressure of the soil in front of the wall, and the foundation bearing capacity. Moreover, several extensive parametric studies were conducted. Thus, the shape of the narrow backfill, the rough soil-wall interface, and the low-strength backfill are all conducive to reducing active earth pressure on a retaining wall.
更多
查看译文
关键词
Narrow backfill, Yielding foundation, Earth pressure, Slip-line method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要