Chrome Extension
WeChat Mini Program
Use on ChatGLM

An Approach to Predict the Residual Stress-Depth-Profile of Thin Sheet Metal Processed by Laser Shock Peening Without Coating

18TH NORDIC LASER MATERIALS PROCESSING CONFERENCE (18TH NOLAMP)(2021)

Cited 0|Views0
No score
Abstract
For conventional laser shock peening, the positive influence of compressive residual stresses on fatigue strength is well understood. To protect the material's surface from ablation, a sacrificial layer is applied. This, however, leads to an additional process step, which deteriorates its economic efficiency. Thus, laser shock peening without coating (LPwC) is more frequently investigated for industrial applications. However, LPwC increases the thermal impact on the material, which may provoke tensile residual stresses in the surface region. In this regard, understanding the influence of LPwC on the residual stress state and deriving a suitable state, e.g., for subsequent applications or forming operations, result in a design of experiment with numerous residual stress measurements. Residual stress-depth-profiles obtained by X-ray diffraction are time-consuming and cost intensive. Hence, a model is proposed to predict the residual stress-depth-profile of LPwC-processed thin sheets. The analytical model is based on the source stress model and uses experimental results, namely hardness as well as shape change measurements. Sheets made of X5 CrNi18-10 and with a thickness of 1 mm are LPwC-processed with a nanosecond fiber laser. In the thermally dominated area where tensile residual stresses are present, the model agrees well with the experimental measurements. Moreover, it is revealed that LPwC leads to a saturation of residual stress level maximum and depth in dependence of pulse energy, repetition rate and number of repetitions. Subsequently, the model is used for tailoring the stress profile of thin sheets by LPwC for subsequent bottom bending.
More
Translated text
Key words
laser shock peening,thin sheet metal,coating,stress-depth-profile
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined