Self-organization of collective escape in pigeon flocks

PLOS COMPUTATIONAL BIOLOGY(2022)

引用 17|浏览6
暂无评分
摘要
Author summaryBird flocks show fascinating patterns of collective motion, particularly when escaping a predator. Little is known, however, about the underlying mechanisms of these patterns. We fill this gap by firstly analyzing GPS data of pigeon flocks under attack by a robotic-predator and secondly studying their collective escape in a computer simulation. Previous research on pigeons has revealed that flock members turn away from the predator more the closer the predator gets. Using computer simulations that are based on pigeon-specific characteristics of motion and coordination among individuals, we study what escape rules at the individual level may underlie this distance-dependent pattern. We show that, even if individuals do not intend to escape more when the predator is closer, their escape frequency still increases the closer they get to the predator. This happens by self-organization from the coordination among individuals and despite their tendency to turn away from the predator being distance-independent. A key aspect of this process is the increasing consensus among flock members over the escape direction when the predator gets closer. Bird flocks under predation demonstrate complex patterns of collective escape. These patterns may emerge by self-organization from local interactions among group-members. Computational models have been shown to be valuable for identifying what behavioral rules may govern such interactions among individuals during collective motion. However, our knowledge of such rules for collective escape is limited by the lack of quantitative data on bird flocks under predation in the field. In the present study, we analyze the first GPS trajectories of pigeons in airborne flocks attacked by a robotic falcon in order to build a species-specific model of collective escape. We use our model to examine a recently identified distance-dependent pattern of collective behavior: the closer the prey is to the predator, the higher the frequency with which flock members turn away from it. We first extract from the empirical data of pigeon flocks the characteristics of their shape and internal structure (bearing angle and distance to nearest neighbors). Combining these with information on their coordination from the literature, we build an agent-based model adjusted to pigeons' collective escape. We show that the pattern of turning away from the predator with increased frequency when the predator is closer arises without prey prioritizing escape when the predator is near. Instead, it emerges through self-organization from a behavioral rule to avoid the predator independently of their distance to it. During this self-organization process, we show how flock members increase their consensus over which direction to escape and turn collectively as the predator gets closer. Our results suggest that coordination among flock members, combined with simple escape rules, reduces the cognitive costs of tracking the predator while flocking. Such escape rules that are independent of the distance to the predator can now be investigated in other species. Our study showcases the important role of computational models in the interpretation of empirical findings of collective behavior.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要