An experimental investigation into the behaviour of destructured chalk under cyclic loading

GEOTECHNIQUE(2022)

Cited 6|Views0
No score
Abstract
Low-to-medium-density chalk can be destructured to soft putty by high-pressure compression, dynamic impact or large-strain repetitive shearing. These process all occur during pile driving and affect subsequent static and cyclic load-carrying capacities. This paper reports undrained triaxial experiments on destructured chalk, which show distinctly time-dependent behaviour as well as highly non-linear stiffness, well-defined phase transformation and stable ultimate critical states under monotonic loading. The chalk's response to high-level undrained cyclic loading invokes both contractive and dilative phases that lead to pore pressure build-up, leftward effective stress path drift, permanent strain accumulation, cyclic stiffness losses and increasing damping ratios that resemble those of silts. These outcomes are relatively insensitive to consolidation pressures and are distinctly different to those of the parent intact chalk. The maximum number of cycles that can be sustained under given combinations of mean and cyclic stresses are expressed in an interactive stress diagram which also identifies conditions under which cycling has no deleterious effect. Empirical correlations are proposed to predict the number of cycles to failure and mean effective stress drift trends under the most critical cyclic conditions. Specimens that survive long-term cycling present higher post-cyclic stiffnesses and shear strengths than equivalent 'virgin' specimens.
More
Translated text
Key words
chalk putty, cyclic loading, destructuration, triaxial, laboratory testing
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined