In situ quantitative field emission imaging using a low-cost CMOS imaging sensor

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B(2022)

引用 2|浏览1
暂无评分
摘要
Spatially resolved field emission measurements represent an important factor in further development of existing field emitter concepts. In this work, we present a novel approach that allows quantitative analysis of individual emission spots from integral current-voltage measurements using a low-cost and commercially available CMOS camera. By combining different exposure times to extrapolate oversaturated and underexposed pixels, a near congruence of integral current and image brightness is shown. The extrapolation also allows parallel investigation of all individual tips participating in the total current with currents ranging from a few nanoampere to one microampere per tip. The sensitivity, which is determined by the integral brightness-to-current ratio, remains unchanged within the measurement accuracy even after ten full measurement cycles. Using a point detection algorithm, the proportional current load of each individual tip of the field emitter array is analyzed and compared at different times during the initial measurement cycle. Together with the extracted I-V curves of single emission spots from the integral measurement, the results indicate the effect of premature burnout of particularly sharp tips during conditioning of the emitter.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要