Chrome Extension
WeChat Mini Program
Use on ChatGLM

Dynamic interplay of biogeochemical C, S and Ba cycles in response to the Shuram oxygenation event

JOURNAL OF THE GEOLOGICAL SOCIETY(2022)

Cited 14|Views24
No score
Abstract
Compared with Phanerozoic strata, sulfate minerals are relatively rare in the Precambrian record; this is probably due to the lower concentrations of sulfate in dominantly anoxic oceans. Here, we present a compilation of sulfate minerals that are stratigraphically associated with the Ediacaran Shuram excursion (SE) - the largest negative delta C-13 excursion in Earth history. We evaluated 15 SE sections, all of which reveal the presence of sulfate minerals and/or enriched carbonate-associated sulfate concentrations, suggesting a rise in the sulfate reservoir. Notably, where data are available, the SE also reveals considerable enrichments in [Ba] relative to pre- and post-SE intervals. We propose that elevated seawater sulfate concentrations during the SE may have facilitated authigenesis of sulfate minerals. At the same time, the rise in Ba concentrations in shelf environments further facilitated barite deposition. A larger sulfate reservoir would stimulate microbial sulfate reduction and anaerobic oxidation of organic matter (including methane), contributing to the genesis of the SE. The existence of sulfate minerals throughout the SE suggests that oxidant pools were not depleted at that time, which challenges previous modelling results. Our study highlights the dynamic interplay of biogeochemical C, S and Ba cycles in response to the Shuram oxygenation event.
More
Translated text
Key words
ba cycles
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined