Exogenous Melatonin Protects Lime Plants from Drought Stress-Induced Damage by Maintaining Cell Membrane Structure, Detoxifying ROS and Regulating Antioxidant Systems

HORTICULTURAE(2022)

引用 10|浏览6
暂无评分
摘要
Lime is an important commercial product in tropical and subtropical regions, where drought stress is becoming one of the most severe environmental challenges in the agricultural sector. Melatonin is an antioxidant molecule that helps plants regulate their development and respond to a variety of stresses. In this research, the effects of exogenous melatonin treatments were evaluated at different concentrations (0, 50, 100, and 150 mu M) on biochemical aspects and gene expression in two species of lime plants ("Mexican lime" and "Persian lime") under normal (100% field capacity (FC)) and drought stress conditions (75% and 40% FC). The experiments were factorial and based on a completely randomized design (CRD) with four replicates. Drought stress caused electrolyte leakage (EL) as well as accumulations of hydrogen peroxide (H2O2) and malondialdehyde (MDA), indicating the occurrence of damage to cellular membranes. In contrast, the melatonin pretreatment at various concentrations reduced the levels of EL, H2O2 and MDA while mitigating the negative effects of drought stress on the two lime species. The application of melatonin (100-mu M) significantly increased the level of proline content and activity of antioxidant enzymes in plants under drought stress compared to control plants. According to real-time PCR analysis, drought stress and melatonin treatment enhanced the expression of genes involved in ROS scavenging, proline biosynthesis, and cell redox regulation in both species, as compared to their respective controls. According to these findings, melatonin is able to detoxify ROS and regulate antioxidant systems, thereby protecting lime plants from drought stress-induced damages.
更多
查看译文
关键词
antioxidant,Citrus,gene expression,hydrogen peroxide,malondialdehyde,melatonin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要