Contrasting responses of plant above and belowground biomass carbon pools to extreme drought in six grasslands spanning an aridity gradient

Plant and Soil(2022)

引用 19|浏览37
暂无评分
摘要
Background and aim As global climate change intensifies, the frequency and duration of extreme droughts are predicted to increase, resulting in extended periods of reduced soil water availability across ecosystems. The allocation of carbon (C) to above- and below-ground plant biomass is a fundamental ecosystem property that varies spatially and temporally with water availability. Yet, how extreme drought affects biomass Cpools along an aridity gradient remains poorly understood. Methods To elucidate the effects of extreme drought on above- and belowground carbon storage, we conducted a 3-year (2015–2017) precipitation manipulation experiment (66% reduction in growing season precipitation) to simulate a multi-year extreme drought across six grasslands spanning an aridity gradient from desert steppe, typical steppe, and meadow steppe in northern China. Results Extreme drought significantly decreased aboveground biomass carbon (AGBC) and litter carbon (LC), but did not affect belowground biomass carbon (BGBC) across the six grasslands. As a result, grassland total carbon (TC) in plant biomass declined overall by ~10%. Across the aridity gradient, drought-induced reductions in AGBC and LC increased with increasing aridity (i.e., reductions were greater in desert steppe than meadow steppe). In contrast, extreme drought increased BGBC in the drier grasslands (desert steppe and typical steppe), but decreased BGBC in the more mesic meadow steppe sites. Conclusion We found that extreme drought elicited contrasting responses of plant above- and belowground carbon across an aridity gradient, and that regionally extreme drought will result in a loss of total plant carbon in grasslands dominated by aboveground plant carbon pools.
更多
查看译文
关键词
Biomass carbon, Climate change, Extreme drought, Grassland, Precipitation manipulation experiment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要